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The transition of a laminar two-dimensional wake is studied experimentally to 
establish the role of amplitude and phase modulations in the spectral-broadening 
and energy-redistribution process. Multiple instability modes fo and fi are triggered 
by acoustic excitation. The spectrum of the fluctuating velocity field formed by the 
growing and interacting instabilities shows the development of a complicated side- 
band structure reminiscent of amplitude- and phase-modulated waves. Digital com- 
plex demodulation techniques are used to obtain quantitative measurements of local 
instantaneous amplitude and phase modulations. Measurements of the modulation 
time traces, their modulation indices, the lag between phase and amplitude modula- 
tions, and the power spectra of the modulations are presented. Our results show that 
both phase and amplitude modulation play a role in the transition process. The 
dominant modulation frequency of both amplitude and phase is that of the difference 
mode fv = fi- f o  produced by the interaction of the two excited instabilities. Phase 
modulation becomes progressively more important as transition proceeds down- 
stream, and seems to play the dominant role in the spectral-broadening and energy- 
redistribution process. Measurements of the bicoherency spectrum indicate that 
sideband structures, and accompanying modulations, are produced by nonlinear 
interactions between the low-frequency difference mode and higher-frequency in- 
stability modes. Some limited measurements indicate that finite-amplitude induced 
nonlinear dispersion effects w(k ,  a2)  may provide a physical mechanism by which 
amplitude modulations generated by nonlinear interactions can induce simultaneous 
phase modulations. 

1. Introduction 
The experiments of Sat0 (1970), Sat0 & Saito (1975) and Motohashi (1979) indicate 

that nonlinear interactions during the laminar-turbulent transition of a two-dimen- 
sional wake produce a distinct change in the character of fluctuations observed in the 
flow. Initially, background noise or externally introduced controlled disturbances 
trigger instability of a limited band of exponentially growing waves. As these insta- 
bilities grow, nonlinear interactions generate new fluctuations at  lower and higher 
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frequencies through difference and sum interactions of the dominant instability 
modes. The results of Motohashi (1979) indicate that nonlinear interactions between 
waves a t  the dominant instability frequencies and lower-frequency fluctuations can 
lead to the generation of new fluctuations a t  multiple sideband frequencies. Sat0 
(1970) and Sat0 & Saito (1975) suggest that nonlinear interactions can lead to ampli- 
tude modulations of the instability waves. In  natural transition, the modulation may 
have a random character. In  controlled transition, discrete low-frequency waves 
modulate the instability modes. In  both situations, modulations of the fluctuating 
velocity field seem to play an important role in the transition process. 

Gertsenshtein, Sukhorukov & Shkadov (1977), in a t’heoretical study of nonlinear 
interactions in a two-dimensional wake, concluded that low-frequency modulations 
of instability fluctuations do play an important role in spectral energy redistribution 
and randomization, and that phase (or frequency) modulation may be a significant 
feature of this process. Sat0 & Saito (1975) suggest that demodulation of amplitude- 
modulated waves may play a role in spectral energy redistribution; the demodulation 
arises from the nonlinearity of wave-wave interactions. Theoretical studies by Kim, 
Khadra & Powers (1980) and Bakai (1970) on general three-wave interactions have 
demonstrated that nonlinear interactions between instability modes and lower- 
frequency waves can generate an instability mode with low-frequency modulations 
in phase, p(x, t ) ,  as well as in amplitude, a(x, t ) ,  such that 

where a(x, t )  = ao(x )  + a,(x, t ) ,  and a,(x, t )  andpm(x, t )  are the slowly varying ampli- 
tude and phase of an instability wave with wavenumber k, and frequency wo. Kim 
et al. (1980) have also shown that when finite-amplitude effects produce a flow with 
a nonlinear dispersion relation, amplitude modulation will induce phase modulation, 
and vice versa. 

The measurements reported in this paper show that the fluctuating velocity field 
produced by multiply interacting instabilities in a wake can be described in terms 
of a dominant instability mode whose amplitude and phase are simultaneously modu- 
lated by low-frequency fluctuations. No dynamical model is available for describing 
how simultaneous amplitude and phase modulations are produced during wake 
transition. However, our results indicate that amplitude and phase modulations are 
produced by nonlinear interactions involving a low-frequency difference mode, and 
suggest that this is one of the basic features that a dynamical model should account for. 

2. Experimental conditions 
Transition measurements were made in the two-dimensional laminar wake of a thin 

airfoil (maximum thickness 3 mm, length 20 em) in a 20 x 20 cm square by 120 cm 
long test section of a low-turbulence wind tunnel. The flow along the airfoil showed 
no sign of boundary-layer instability. The tunnel is an open-flow once-through type 
with a 20: 1 contraction zone, driven from the downstream end by a Roots-Connerville 
positive displacement pump. The test section is isolated from pump noise by a sonic 
throat. The residual longitudinal turbulent intensity in the test section is 0.09 yo a t  
a wind speed of 8.4 m/s. The Reynolds number of the wake immediately behind the 
plate was R = G16, when based on the frec-stream speed U, and the wake half-width b .  
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FIGURE 1 .  Downstream variations of centre-line velocity U, and wake half-width b. 

Excitation at f,, = 550 Hz and fl = 582 Hz. Uo = 8.4 m/s. 
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FIGURE 2. Mean-velocity distribution. Uo = 8.4 m/s. Excitation at fo = 550 Hz, 
and fi = 582 Hz. 

The wake is symmetric, and downstream variations of centre-line velocity U, and 
wake half-width b shown in figure 1 agree with the measurements of Sat0 & Kuriki 
(1961) and others. Downstream changes in mean velocity profiles formed in the wake 
of the splitter plate are shown in figure 2. Measurement of mean and fluctuating 
velocities were made with a DISA 55M constant-temperature hot-wire system. Hot- 
wire signals were digitized, after anti-alias filtering with Krohn-Hite filters, by a 
Biomation 8100 waveform recorder, which records 2048 eight-bit samples. The 
sampling interval was 200 ,us, yielding a Nyquist frequency of 2.5 kHz. The digitized 
data were transferred to magnetic tape by using an LSI-11 microcomputer. Data 
analysis took place on the CDC Cyber 70 Model 750 computers of the University of 
Texas Computation Center. 
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FIUURE 3. Downstream variations in tho r,m.s. amplitude d’(f)/ U, of the longitudinal velocity 
fluctuations a t  the cross-stream location of peak G’(x, t ) .  &, = = 0.4, 8* = &r. 0 ,  &’(f0); 
0, d’(fi) ; A *  d’(fJ ; 0, G’(fg). 

3. Experimental results 
3.1. Linear stage of transition 

The linear-instability stage in the present experiments was used to establish the initial 
conditions for the subsequent nonlinear stages. More specifically, the linear stage was 
used to generate instability waves with specified amplitude- and phase-modulation 
characteristics as input for the nonlinear stages of transition. Acoustic excitation 
was used to excite two small-amplitude instabilities at frequencies fo and f, which lie 
a t  or near the most-amplified mode observed during natural transition. Values of fo 
and fi were chosen so that the difference frequency formed by their interaction was a 
near-neutral mode with a frequency an order of magnitude smaller than either fo or f,. 
The level of acoustic excitation was such that at  x = 0.1 cm, i.e. the beginning of the 
initial linear-instability stage of transition, the r.m.s. amplitudes a‘( f,,) and a‘( f,) of 
the excited modes did not exceed the level of the dominant 1ow.frequency background 
noise of the tunnel. A circumflex indicates an r.m.s. value and u‘ is the longitudinal 
velocity fluctuation. 

The initial development of the transition can be followed in figure 3, which shows 
the downstream growth of the r.m.8. amplitudes of the fo and f, instabilities. Power 
spectra of longitudinal velocity fluctuations shown in figure 4 indicate that as 
early as x = 0.1 cm, weak instabilities a t  fo and f, are present. The power a t  fo is 
nearly an order of magnitude greater than that at  f,, and both are of the same 
order as the peaks in the low-frequency background noise. The fo and fi instabilities 
initially grow exponentially with downstream distance. The non-dimensional spatial 
growth rate bai = 0.19 measured for the most-unstable mode fo is in good agreement 
with the value of 0.20 measured by Sato & Kixriki (1961), and with the theoretical 
value of 0.21 calculated by Gaster (1965). No evidence of significant interactions 
between fo and f, can be seen until x 1: 1.0 cm, where an emerging fluctuation at  the 
difference frequency f, appears in the power spectra. Note that the various low- 
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FLGURE 4. Initial downstream variations in the power spectra of longitudinal velocity fluctua- 
tions u f Z ( f ) / U ; .  Measurements made at  cross-stream points corresponding to locations of &La,. 
2,  = /?* = 0.4, 8, = in. 

frequency spectral peaks lying between f,, and fo do not grow with downstream dis- 
tance from 0.1 to 1.0 cm. Rather, the peak a t  f ,  emerges from the naturally occurring 
low-frequency background noise. We shall arbitrarily refer to  x = 1.0 cm as the 
beginning of the nonlinear stage of t,ransition, and designate it, and the transition 
parameters a t  that location, by an asterisk. I n  the experiments reported here, 
x* F 1.0 cm is roughly equal to  0.7 downstream wavelengths of the dominant fo 
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Excited Difference AM-index PM-index Phase lag 
Experiment modes mode a* P* 0, 

f,, = 65 0.4 0.4 t n  

f,, = 32 0.2 0.2 in 

fi = 644 

f o  fi = = 582 550} 

f o  = 57g) 

111 f-1 = 538'1 = 46 

I 

I1 

f o  = 584 0.4 0.2 - 0.2n 
V 

fi = 630) 
TABLE 1 

instability mode. a'( f o ) /Um a t  this point was typically of order 1.5-2.0 yo. Values of 
the frequency content and relative amplitudes of the instability waves at x* are given 
in table 1 for the three experiments studied here. Note that, in the third experiment, 
three instabilities were excited in the linear stage. 

The composite velocity field produced by two or more instabilities as they start to 
interact with one another a t  x* can also be described in terms of a wave at  the domi- 
nant instability frequency whose amplitude and phase are modulated by low-frequency 
fluctuations, We shall refer to such amplitude-modulated-phase-modulated waves as 
AM-PM waves.. Also indicated in table 1 are the initial amplitude- and phase-modula- 
tion characteristics of the instability field a t  x* as specified by the amplitude-modula- 
tion index & = &(x, t)/&,(x), the phase-modulation index B = $,(x, t ) ,  and the lag 8 
between tlhe amplitude and phase modulation. The two experiments with equal 
amplitude- and phase-modulation characteristics at x* (i.e. &, = P*, and 8, = &r) 
represent AM-PM waves comprised of a carrier a t  fa, an upper sideband at  fl = fa + f,,, 
and a cancelled lower sideband at  f-l = f a  - f,,, Primary attention will be focused on 
these experiments. We will also discuss some features of the transition triggered by an 
AM-PM wave in which the amplitude modulation (a, = 0.4) dominates the phase 
modulation (p* = 0.2). This wave can be modelled in terms of a carrier a t  fo, a weak 
upper sideband a t  fa + f , ,  and a, strong lower sideband at  fa - f,,. 

3.2. Onset of nonlinear interactions 

A t  x = 1.00 cm, the power spectra in figure 4 indicate that the power in the fo = 579 Hz 
mode is nearly an order of magnitude greater than that of the fl = 644 Hz instability, 
and two orders of magnitude greater than that of the emerging fluctuation a t  
f, = fl-fo = 65 Hz. Definite peaks at  harmonic frequencies 2f0, 2fl, and the sum 
frequency f ,  = f a +  fl also appear a t  x = 1.0 cm, and by x = 2.0 cm the dominant 
instability fluctuation, fa, as well as its harmonics 2 fa, 3 fa ,  and the difference frequency 
f,, have developed multiple sideband structures. Note how the generation of sidebands 
causes a filling in of the valleys in the spectrum. This is especially evident between 
x = 2.0 cm and x = 3.0 cm. Beyond x, = 1.0 cm, both instabilities continue to grow 
at  their exponential rates near their initial values, even though interactions between 
the f o  and fl instabilities become progressively stronger. As shown in figure 3, the 
r.m.s. amplitudes of the sum and difference modes f ,  and f,, grow in tandem with the 
fa andf, instabilities. At x = 3.00 cm, where the fa and fi instabilities reach a tem- 
porary finite-amplitude equilibration, the sum and difference modes also peak out. 
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3.3. Dournstream generation of amplitude and phase modulation 

Two notable features of the power spectra in figure 4 are the emergence of difference 
mode fluctuations and the generation of sideband structures. At x = 1.0 cm, for 
example, a small but distinct fluctuation a t  the difference frequency is evident. At 
x = 1.5 cm, the difference mode emerges as the dominant low-frequency fluctuation, 
along with a small but distinct peak a t  the lower sideband frequency f-l = fo - f,. By 
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FIGURE 6. Subsequent downstream variat'ions in the power spectra of longitudinal velocity 
fluct~uatioris U ' ~ ( ~ ) / U , .  Measurements made at cross-stream point,s corresponding to locations 
of ??:,,:,y. 8, = /I* = 0.4, 0, = in. Thr y-locations of zi,,,,, arc given below: 
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0.5 0.4 3.0 1 . 1  30 4.2 
1.0 0.4 6.0 1 .!) 40 3.6 
1.5 0.5 1 0  4.1 50 0.0 
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FIGURE 7. Subsequent downstream variations in (a )  the waveforms of longitudinal velocity 
fluctuations u'(x, t)/U,: ( b )  the instantaneous amplitude modulation a,(x, t )  / U 0 ;  (c) the instan- 
taneous phase modulations p,(x,  t ) ,  in radians, of the waveforms. Measurements correspond to 
the power spectra shown in figure 6. 8, = /?* = 0.4, 0, = in. 

x = 2.0 cm, the fluctuation a t  f-l together with the fl instability, which now acts like 
f+l = f,, + f y ,  the first upper sideband, forms an asymmetric distribution of sidebands 
surrounding f,,. The asymmetry is even more evident if one notes the presence of 
fluctuations at f+z = f,,+2fy. By x = 3.0 em, the power spectrum displays a pro- 
nounced, asymmetrically distributed, multiple-sideband structure surrounding fo, 
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FIGURE 8. Instantaneous frequency shifts (modulations) produced by phase modulations at  
n = 10.0 cm. The phase-modulation ordinate is in radians, while the frequency modulation 
ordinate is in hertz. Note that the maximum instantaneous frequency deviation in this record 
is of order 200 Hz, roughly 30 yo of the carrier frequency f,,. 

and f,, 2f0, 3f0, etc. As pointed out by Mollo-Christensen & Ramanonjiarisoa (1979) 
and others, such multiple-sideband distributions are suggestive of waves modulated in 
both amplitude and phase. 

Shown in figure 5 are the u' velocity fluctuation waveforms corresponding to  the 
power spectra in figure 4. The initial fluctuation field a t  x = 0.1 cm is irregular and 
has no obvious regular modulations to it. As the fo and fl instabilities grow to ampli- 
tudes significantly greater than that of the background noise, the waveform starts to 
display a low-frequency modulation. By x* = 1.0 cm the waveform is clearly ampli- 
tude-modulated. As interactions between the fo and fl instabilities become more 
intense, the modulation characteristics of the waveform change. This is easily seen by 
comparing the waveform at x = 3-0 ern with that at x = 1.0 cm. It is not evident from 
a purely visual inspection of the modulated waveforms, however, whether modulations 
in phase, or equivalently in frequency, are also present. In  order to obtain quantitative 
measures of the amplitude and phase modulation, the digital complex demodulation 
procedures of Khadra et al. (1981) were applied t,o the time-series data shown in figure 
5 to compute the instantaneous amplitude and phase modulations of the waveforms. 
The results are shown to the right of each waveform. The instantaneous amplitude- 
modulation traces are plotted in the same units used for the total instantaneous wave- 
form. The instantaneous phase-modulation scale is in units of radians. The modulation 
plots and the wave-form plots use the same time scale. 

It is evident from figure 5 that the two growing instabilities form an amplitude- 
artd phase-modulated wave a t  x* = 1.0 cm. Both modulations are, for the most part, 
sinusoidal a t  frequency f,. As transition proceeds downstream beyond x = 3-0 cm, 
the power spectra in figure 6 and waveforms and demodulates in figure 7 indicate 
that amplitude modulations become irregular and weak, while phase modulations, in 
contrast, become stronger and more sinusoidal. Just  prior to randomization and turbu- 
lence, the phase modulation becomes very intense, and contains lower frequencies. 
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The basio sinusoidal nature of the phase modulation, and the frequency modulations 
it induces, are apparent in figure 8, where the phase modulations at x = 10 cm are 
plotted on an expanded scale. Note that the instantaneous frequency shift of the 
modulated wave is given by h(x, t )  = - ap,/at. 

Quantitative measures of changes in the intensity of the amplitude and phase 
modulation were obtained by calculating the amplitude- and phase-modulation 
indices B and 8. For the case of a wave whose phase is modulated by a single spectral 
component, the ratio of the maximum frequency deviation (from the carrier) to  the 
modulation frequency is given by Gumax/u = p. Computed downstream variations in 
a^, p and .̂ /la are plotted in figure 9. Note that, initially a t  x+ = 1.0 cm, B and /? have 
the same value, 

a* = p* N 0.4, 

indicating that the instability wave in this experiment starts out with equal amplitude- 
and phase-modulation characteristics. However, strong nonlinear activity within the 
first 3-5 cm of downstream distance (i.e. roughly 2-3 wavelengths of f o )  causes B to 
rapidly decrease to a value of roughly 0.10, while p, in contrast, increases to  a value 
of roughly 0.6, giving a value of $18 = 0.16. Between 5 x < 30 cm, both B and p 
stay fairly constant in value. The mean velocity deficit and wake half-width shown 
in figure 2, as well as peak values of &'( f o )  and &'(fl) shown in figure 3, also stay fairly 
constant in this region. For x > 30 cm, the power spectra in figure 6 indicate a rapid 
evolution to  a turbulent spectrum. This final randomization stage is accompanied by 
a marked increase in the phase-modulation index /?in figure 9. Also shown in figure 9 
are values of B, p and a//? measured in a similar series of experiments in which 
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FIGLIRE 11. Cross-stream variations in the power spectra of longitudinal velocity fluctuations 
d2(f)/UO2at m = 3.00 cm.Measurementscorrespond to thewaveformsin figure 10. &* = p* = 0.4, 
e, = in. 
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y ( m m )  

FIGURE 12. Cross-stream variations in the r.m.5. amplitude of longitudinal velocity fluctuations 
2 i ’ ( f )  at x = 3.00 cm. 0 ,  zi’(f,,) ; 0, c’(fi) ; A ,  c’(f,) ; 0, c’(f,,). 6 ,  = = 0.4, o* = in. 

&* = /?* = 0.2 and O* = in at x* = 1.0 (see table 1) .  Although the initial modulation 
levels differ, the same basic tendency for phase modulation to dominate the highly 
nonlinear stages of transition is apparent. 

3.4. Cross-stream variations in amplitude and phase modulations 

Measured cross-stream variations in the instability waveforms and power spectra are 
shown in figures 10 and 11 for velocity fluctuations measured at  x = 3.00 cm, the 
location of the downstream maximum in a’( fo) shown in figure 3. Cross-stream wave- 
forms show pronounced changes in the amplitude-modulation characteristics as y 
varies from the centre line of the wake. At the y = 0 centre line, for example, the f o  
instability mode and its sidebands are weak and the spectrum is dominated by large- 
amplitude fluctuations at f,, and 2 fo; note the harmonics off, and the sidebands around 
2 f,,. As distance from the cent’re line increases, power spectra show that the energy at 
f ,  decreases, while that at  f o  increases until a maximum is reached a t  y = 1.1 cm, 
after which it decreases. Cross-stream variations in power spectra reflect the influence 
of cross-stream modal structure of the various fluctuations. Cross-stream r.m.s. pro- 
files a t  x = 3.0 cm are plotted in figure 12. The difference and sum frequency modes 
have maximum values at  the centre line, while thef, and fi instability modes have 
off-axis peaks. 

The amplitude- and phase-modulation time traces of the waveforms in figure 10 
are plotted to the right of the corresponding time traces. They reveal a high degree 
of cross-stream variability in amplitude modulation. At the centre line, for example, 
virtually no amplitude modulation is present, even though strong low-frequency 
flnct’uations are evident in the total waveform and in the power spectra. In 
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FIGURE 13. Cross-stream variations in the amplitude-modulation index &, and in the phase 
modulation index 1, for the longitudinal velocity fluctuations shown in figure 10. x = 3.00 cm. 
A, Oi; 0 , D ;  0, 611. 6, = 1, 0.4, 8* = ST. 

contrast, a t  y = 1.1 cm, the location of the maximum value of G’(f,), very strong 
amplitude modulations are evident. Cross-stream changes in phase modulation are 
much less pronounced. Strong, basically sinusoidal, phase modulations are evident in 
figure 10 a t  all cross-stream locations. Cross-stream variations in bhe amplitude- and 
phase-modulation indices are plotted in figure 13. Note the non-zero value for the 
amplitude-modulation index & at the centre line. This is a result of the definition of 
the modulation index which requires the small degree of amplitude modulation to be 
normalized by the equally small r.m,s. value of the fo fluctuations a t  the centre line. 

3.5. Vuriations in sideband distribution asymmetry 

A notable feature of the power spectra plotted in figures 4, 6 and I1 is a tendency for 
the asymmetry of the distribution of sidebands f o  k nf,, to change with both down- 
stream distance and cross-stream location. The symmetry or asymmetry of the dis- 
tribution of sidebands relative to the ‘carrier’ is related to the degree of amplitude 
and phase modulations as measured by a and /I, and to the phase lag 0 between the 
amplitude and phase modulations. This is most readily apparent when the modulations 
are sinusoidal and of the same frequency. Modulation time traces indicate that, for a 
substantial portion of the nonlinear stages of transition? the low-frequency modulations 
are close in many cases to being single-frequency sinusoids. Some useful insight can 
be gained by comparing experimental results with the analytic features of a wave a t  
(w,, k,) whose amplitude and phase are modulated by a single low-frequency wave a t  
( V ?  K )  : 

u’(x,t) = a,[l + a s i n ( ~ ~ - v V t + 8 ) ] ~ 0 ~ [ k ~ x - ~ , t + ~ s i n ( ~ x - ~ V t ) ] .  

The phase lag between the amplitude and phase modulation is given by 0. As shown 
by Kim et al. (1980), this modulated wave is equivalent to a ‘carrier’ wave centred a t  
(wo, k,), surrounded by ‘sideband’ fluctuat’ions a t  frequencies w, = w, k nv and wave- 
numbers k, = k, + n~ : 

m 

u’(x, t )  = CI, C A ,  cos (knr - o,t + $n). (3) 
11- - m 
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--II 

FIGURE 14. Cross-stream variations in 8, the phase lag between the amplitude and phase 
modulat.ion, of the longitudinal velocity fluctuations shown in figures 10 and 11 at I% = 3.00 cm. 
0 ,  values of 8 measured for 6, = j3, = 0.4,0, = tm. 0, values of 0 measured for 6, = /?, = 0.2, 
0, = &T. 

The power difference between the nth upper and lower sidebands is determined by 

4an A2, - A!, = - J i ( / ? )  sin 8, 
P (4) 

where a = 4 2  3, /3 = 4 2  b, and J,(/?) is the Bessel function of the first kind. 
Values of a andp therefore determine the magnitude of the power difference between 

the nth upper and lower sidebands. However, it is the value of 8, the phase lag between 
amplitude and phase modulation, which determines the sign of the difference; i.e. 
the sense of the asymmetry of sideband distribution relative to the carrier. For 8 = 0, 
the distribution will be symmetric. When the amplitude modulation and phase modu- 
lation are out of phase by - in, the lower sidebands are larger than the upper side- 
bands, and the distribution will be skewed towards the lower sidebands. When 8 = in, 
the upper sidebands are larger than the lower sidebands, and the asymmetry will be 
skewed towards the upper sidebands. 

The connection between sideband asymmetry and phase lag 0 can be seen by 
comparing the cross-stream values of 8, plotted in figure 14 for x = 3.00 cm, with cross- 
stream changes in sideband distribution shown in figure 11. Cross-stream values of 8 
vary from +in for IyI > 1 . 1  cm to -in for IyI < 1 . 1  cm. The location IyI N 1 . 1  cm 
at which 8 changes sign coincides with the peak in a’( fo) shown in figure 13. Note that 
for IyI > 1 - 1  cm the symmetry of sideband distribution is skewed towards the upper 
sidebands, while for Jy1 < 1.1 cm the sidebands are skewed towards the lower side- 
bands. Near IyI 1: 1 .1  cm, the sidebands are symmetrically distributed and 8 appears 
to go through a zero axis crossing. 

When considering the meaning of changes in sideband asymmetry, i t  is important 
to keep in mind that the values of B computed by digital complex demodulation are 
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determined by the sideband structure of the modulated wave being analysed. In  other 
words, if a wave with a particular sideband distribution is analysed by digital complex 
demodulation, then values of a, ~3 and 0 will be computed which give the ‘equivalent ’ 
AM-PM description of that wave. Thus changes in amplitude and phase modulation 
can be viewed as an alternative way to describe changes in the distribution and 
energy content of the sideband structure. 
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4. Discussion 
4.1. Spectral broadening and energy redistribution by modulation 

The results presented so far demonstrate that  the fluctuating velocity field observed 
in the nonlinear stages of multiple-instability transition can be described in terms of 
an amplitude- and phase-modulated wave a t  the dominant instability frequency. 
The amplitude and phase modulations are a t  frequencies corresponding to  that of the 
difference mode f, and its harmonics. As downstream distance increases, and spectral 
broadening becomes more pronounced, phase modulation as measured by /? becomes 
more intense, and amplitude modulation as measured by & becomes less intense. 
The ratio &/j? decreases rapidly in both experiments. The general connection between 
spectral broadening and changes in phase modulation is not unique to  transitions with 
equal amplitude- and phase-modulation indices a t  the onset of nonlinear activity. 
For example, shown in figure 15 is the downstream behaviour of &, B and for an 
AM-PM wave that is initially dominated by amplitude modulations such that 
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FIGURE 16. Downstream changes in the probability density function (p.d.f.) of longitudinal 
velocity fluctuations at cross-stream locations of CLr. f.d.f. values calculated by the pro- 
cedure of Tarter & Kranmal (1967). &, = /?* = 0.4, 8, = +n. 
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&* = 0.4, /?* = 0.2 and O* = - 0.27~. Although there are detailed differences in how 
& and /? behave in this experiment, the same general trends are observable; namely 
the amplitude-modulation index decreases and the phase-modulation index increases 
as transition progresses. Thus, even when transition is provided with an AM-PM 
wave that is dominated by amplitude modulation, it chooses to  enhance the phase- 
modulation characteristics of the fluctuating velocity field. 

The spectral broadening and randomization role of phase modulation becomes even 
more apparent when downstream changes in & and /? are compared with down- 
stream changes in the probability density function (p.d.f.) of longitudinal velocity 
fluctuations (figure 16). Initially, a t  the onset of instability, x = 0.1 cm, the 
wake is laminar and the low-intensity random background fluctuations display a 
gaussian-like distribution. The onset of instability effectively organizes the flow by 
introducing a narrow band of intense fluctuations which receive energy directly from 
the mean flow. By x = 3.0 cm, the velocity field exhibits the statistical characteristics 
of a dominant instability wave superimposed on a field of random background 
fluctuations. As transition progresses, nonlinear interactions redistribute instability- 
mode energy by producing sidebands and low-frequency difference modes, and the 
p.d.f. becomes skewed by x = 10 cm. I n  the strong spectral-broadening region 
10 < x < 40 cm, where premains relatively constant, the p.d.f. changes only slightly. 
However, beyond x = 40 cm, where /? changes dramatically, the flow evolves into a 
final turbulent state with a much higher random-fluctuation energy level, and the 
p.d.f. takes on a gaussian-like distribution characteristic of turbulent flow. 

The question of interest then is why transition apparently prefers to emphasize 
phase modulation instead of amplitude modulation. Some simple considerations based 
on general properties of amplitude- and phase-modulated waves suggest that  the 
preference may be due t o  the more efficient spectrai-energy redistribution properties 
of phase-modulated waves (Panter 1965). For example, consider a wave a t  fo whose 
amplitude is modulated by a simple sinusoidal fluctuation at  f, (i.e. let ,4 = 0 in (2)).  
This pure amplitude-modulation process will yield only two new sidebands, a t  
fo f f,, the sum and difference frequencies. I n  contrast, set a = 0 and consider a wave 
a t  fo whose phase is modulated by a simple sinusoidal a t  f,. This purely phase- 
modulated wave will yield, strictly speaking, an infinite number of sidebands a t  
fo f nfv (n = 1,2,  ...). The number of sidebands with significant amplitudes, and the 
size of the frequency shifts from the carrier, will increase as the phase-modulation 
index p increases. A more significant difference between amplitude and phase modu- 
lation, however, is the fact that  simple amplitude modulation cannot alter (re- 
distribute) the energy of the carrier wave. For example, although phase modulation 
generates numerous sidebands, the total energy of a phase-modulated wave remains 
constant a t  4,:. To achieve this, the energy of the carrier wave decreases, as determined 
by its coefficient Ji(,4), so that the residual energy can be distributed to its sidebands. 
I n  contrast, although the total energy in a purely amplitude-modulated wave increases 
over that of an unmodulated wave, the energy of the carrier is unaffected and remains 
at $a$; the added energy a%, supplied by the modulated wave, finds its way into the 
sidebands only. If, as generally suspected, the spectral redistribution of energy is one 
of the primary roles of nonlinear interactions, then simple amplitude modulation 
cannot get the job done effectively since it cannot redistribute the energy of the 
dominant instability wave. Phase modulation, however, can redistribute carrier 
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energy. The efficiency of the redistribution, as measured by the number of sidebands 
generated and their amplitudes, increases as the phase-modulation index increases, 
just as observed in our experimental data. 

Although phase modulation dominates the downstream transition, our measure- 
ments show that simultaneous amplitude modulations are still present, and are pre- 
sumably available to play a role in the transition. The particular nature of that role 
is suggested by the spectral composition and power of a wave with simultaneous 
amplitude and phase modulations. As shown by Panter (1965)) when the amplitude 
and phase of a wave are simultaneously modulated, the energy of the carrier wave, 
as well as that of the amplitude-modulating wave, can be redistributed to the side- 
bands. The efficiency of the redistribution depends on the phase-modulation index p, 
while the added energy which can be redistributed, along with tha t  of the carrier, 
depends on the amplitude modulation. Since amplitude modulations will always 
exist when waves interact, it appears that one of the major roles amplitude modulation 
may play in transition is that of a provider of energy for phase modulation to re- 
distribute to the sidebands. 

As transition proceeds downstream, the power spectra in figures 4 and 6 indicate 
that nonlinear interactions produce more and more low-frequency fluctuations which 
can participate in the modulation process. The velocity waveforms and modulation 
time traces in figures 5 and 7 show that the low-frequency fluctuations become more 
irregular. Note how the phase modulations become very intense and very low in 
frequency during the randomization stage. The efficiency of spectral broadening and 
randomization is enhanced in multitone phase-modulated waves (or in amplitude- 
multitone phase-modulated waves) by the production of cross-product sidebands due 
to intermodulations. Cross-product sidebands are not produced by multitone ampli- 
tude modulation. For example, if amplitude modulations a,,(t) = a1 cos (v, t  + 0,) and 
a,,(t) = a2 cos (v,t + 0,) give rise to sidebands a t  wo & vl and w,, ? v2 respectively, then 
the multitone amplitude modulation a,(t) = aml(t) + amz(t) will only give rise to side- 
bands at  wo & v1 and wo & v2. In  contrast, if sinusoidal phase modulations 

give rise to sidebands at 

the multitone modulation 

will give rise to sidebands a t  

In addition, when combined amplitude and multitone phase modulation occurs, the 
phases of the variously generated sidebands will be of the form k m, rf: mz+z - 0,) 
and any randomness associated with either the amplitude modulation or the phase 
modulation will be efficiently spread throughout the spectrum. 

Prnl(t) = P,sin (vlt+ $1) and Pmz(t) = Pzsin (vzt + $2) 

w o & n v ,  and w o & m v ,  (n,m = 1 , 2 , 3 , . . . ) ,  

Pm(t) = Pml(t) + ~ r n z ( t )  

w,+nv,$mv, (n,m, = & 1, 5 2, ...). 

4.2. Nonlinear interactions and the production of phase and amplitude modulations 

The simple properties of amplitude- and phase-modulated waves just presented do 
not provide a physical model for the spectral-broadening process. They do suggest, 
however, why our data indicates the importance of phase modulations in the transi- 
tion process. The question remains as to how amplitude and phase modulations are 
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FIGTIRE 17. Schematic of AM-PM sideband production by three-wave 

coupling interactions. 

generated. Our results and those of Motohashi (1979) indicate that the emergence of 
a strong low-frequency velocity fluctuation at the difference frequency plays a signi- 
ficant role in initiating the generation of amplitude and phase modulations, and in 
producing subsequent modulation changes as transition progresses. The picture that 
emerges from experimental measurements is that amplitude and phase modulations 
may be generated by a process, illustrated in figure 17, that goes somewhat as follows. 
Natural modesf, andfi of the wake are excited and grow exponentially. After attain- 
ing finite, but small, amplitudes, fo and fi interact nonlinearly to produce sum- and 
difference-frequency modes f, and f,. The difference-frequency mode grows exponen- 
tially (but not at a rate predicted by linear theory) and subsequently interacts with 
the two instability modes to produce other sum and difference modes. These modes 
appear as 'sidebands ' of the most-unstable instability mode. This process continues 
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as the transition progresses towards turbulence and subsequent multiple cross- 
interactions produce a continuous evolution of the transition spect,rum. 

4.2.1. Bicoherency spectrum. Some features of this descriptive picture can be sub- 
stantiated by using measurements of the bicoherency spectrum to detect the presence 
of nonlinearly interacting waves. As shown in a series of papers by Kim and collabo- 
rators (Kim & Powers 1978, 1979; Kim et al. 19801, the bicoherency spectrum is 
defined as 

@ ( w i )  represents t,he computed Fourier amplitude of the velocity fluctuation time 
series a t  position (x, y) in the flow, and E denotes an expect'ed value. The bispectrum is 

B ( W i ,  W j )  = E[@(o,) @(Wj) O(0Ji + mi)]. 
The bicoherence spectrum measures the coherence between three waves due to non- 
linear coupling. The bicoherency spectrum is bounded by 

0 < b 2 ( o i , W i )  6 1 .  

Values of the bicoherency near unity indicate that the wave at  w, = wi + wi is excited 
by the coupling (interactlion) of waves a t  wi and w j .  A value of the bicoherency near 
zero implies an absence of phase coherence and suggests that even though the waves 
at wi,  wi, and w, may satisfy the resonant frequency matching condition w, = w ,  + mi, 
they are not coupled and the fluctuation at  wm is not the result of interactions between 
fluctuations at  w ,  and w j .  It can also be shown that the value of b2(mi, w i )  provides a 
measure of the fraction of power a t  wi + wj  due to nonlinear coupling of the waves a t  
wi and w j .  

The bicoherency spectrum was computed for the velocity fluctuation fields measured 
at x = 2 cm, 3 cm and 6 cm in the experiments where &* = fl* = 0.4 and 8 = in. 
The y-co-ordinates correspond to locations where B' is a maximum. The spectra 
at these locations are given in figures 4 and 6. It is clear from figures 1 ,  3 and 9 that 
the region 2.0 6 x < 6 cm is characterized by intense variations in mean-flow develop- 
ment, velocity-fluctuation growth and modulation-index ratio change. Values of the 
bicoherence were computed by the digital bispectral analysis techniques of Kim & 
Powers (1978). An ensemble of 16 statistically independent records was created by 
measuring the fluctuating velocity field during intervals formed by randomly turning 
the excitation oscillators on and then off. This procedure insured that each measure- 
ment was statistically uncorrelated with the others, and allowed us to detect any phase 
coherence among wave triads due to nonlinear coupling. 

4.2.2. Sum and difference mode production. Computed bicoherency spectra are 
plotted in figure 18. Note that, as early as x = 2.0 cm, significant peaks (b2  > 0.90) 
appear a t  frequency pairs corresponding to the difference interaction b2( f,, f,,) and to 
the sum interaction b2( fo, f,), providing quantitative evidence that the fluctuations 
which fall a t  the difference and sum frequencies are indeed due to the interaction of 
the fo and fi modes. The high values of squared bicoherency measured for the sum and 
difference interactions indicate that the major fraction of power of the fluctuations a t  
,f, and f, is due to nonlinear coupling of the fluctuations at  fo and fi. Although the sum 
interaction has a larger value of squared bicoherency than the difference interaction, 
power-spectra measurements show that i t  is the difference mode that grows most 
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FIGURE 18. Contour maps of the squarcd bicoherericy spcctriirn at locations of $La,. 
C'oritoiir Iwels arc at b 2 ( f i , f , )  = 0.6,  0 .7  and 0.8. 8, = /?, = 0.4, 0, = in. 
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0.89 
0.98 
0.55 
0.05 
0.05 
0.86 
0.81 
0.14 
0.09 
0.98 
0.94 

TABLE 2 

0.56 
0.68 
0.69 
0.90 
0.80 
0.26 
0.56 
0.63 
0.55 
0.94 
0.66 

0.57 
0.66 
0.59 
0.26 
0.24 
0.56 
0.09 
0.37 
0-06 
0.18 
0.25 
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FIGURE 19. Measured values of wavenumber veIsus frequency. 6, = B* = 0.2, B, = an. 

energetically. Miksad, Jones & Powers (1981) computed the bispectral power transfer 
function for the interactions of f o  and fi and showed that for af( fi)/a’( f , )  greater than 
roughly 0.25 the power flow into f , ,  due to nonlinear interactions between fi and f o  
exceeds the power flow to fo .  I n  the present experiments 2f(f , ) /2‘(f ,J)  equals 0.65 at 
.r = 2.00 mi. 
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4.2.3. Sideband production. The various other bicoherency peaks in figure 18 
indicate nonlinear couplings among the many modes in the transition spectrum. 
Some of these values are given in table 3. Of particular relevance to  the production 
of sidebands surrounding fo, and its harmonics, are the peaks in the bicoherency 
spectrum a t  b2(f,,fo), b2( f,,, 2 f,,) and b2( f,,, 3f,). These peaks correspond to  interactions 
between the difference mode f , ,  and the higher-frequency modes fo, 2f0 ,  and 3f0 to  
produce sideband structures of the form fo n f,,, etc. I n  comparing the bi- 
coherency calculations a t  x = 3.0 ern with those at x = 3.0 cm, particular note 
should be taken of the fact that, although a t  x = 3.0 cm bicoherency peaks are still 
present a t  b2( f,,, f,), the largest sideband production peaks have moved to  interactions 
of the form b2(2f,,, nf,,); i.e. interactions between 2f, and f,,, 2f0 and 3f, .  By x = 6.0 cm 
the sideband-producing peaks again lie a t  b2(fU, nf,). It is not at all evident from the 
power spectra at x = 3.0 cm why 2 f,, should be preferentially involved in the produc- 
tion of sidebands. A component at 2 f u  does appear in the spectrum a t  x = 3.0 cm, 
but it is only one-half as large as the peak a t  f,,. We have no explanation for this 
puzzling anomaly other than, as indicated in figure 18, interactions with 2f, may be 
more efficient in adding widely spaced sidebands to  enhance the filling of the spectral 
valleys to  either side of the carrier. 

4.2.4. AJI-PN production via nonlinear interactions. The shift in the bicoherency 
peak from f , ,  to  2f,, and back again, although not understood, does provide a con- 
venient test case to  examine the contention of Bakai (1970) and Kim et al. (1980) that 
the modulation characteristics of a carrier wave can be described in terms of nonlinear 
wave-wave interactions between a low-frequency difference wave (or one of its har- 
monics) and a carrier wave? and its sidebands. If this is avalid premise, then one would 
expect to see some sort of change in the modulation characteristics a t  x = 3.0 cm. 

Shown in figure 20 are the power spectra of amplitude and phase modulations at 
the three downstream locations. At n: = 2-0  cm, both amplitude modulation and 
phase modulation are dominated by the f, component, and the peak in the bico- 
herency spectrum falls a t  b2( fu,fo). At x = 3.0 cm, however, the amplitude-modulation 
spectrum is dominated by a 3 f,, component, and the bicoherency peak has shifted to 
b2(2f,,,f,,). In  contrast, the phase-modulation spectrum is still dominated by an f,, 
component, although a small peak is present a t  2fU.  At x = 6.0 cm, the peak in the 
amplitude-modulation spectrum returns to 2 f,,, and the bicoherency returns to  
b2((f , , , fo) .  The phase-modulation spectrum remains atf,,. It is interesting to  note that 
the amplitude modulations shown in figure 10 a t  x = 3.00 cm exhibit second-harmonic 
distortions a t  y-locations which roughly correspond to maxima in the amplitude 
G’(fo) of the dominant instability mode (figure 12). The phase-modulation time traces, 
on the other hand, exhibit some second-harmonic distortions near the centre line 
where a’( f,,) is a minimum but a’(f,,) is a maximum. It appears, then, that the mecha- 
nisms controlling phase and amplitude modulations may not reside at the same 
location in the shear layer. They do, however, seem to be linked, though not neces- 
sarily in lock-step a t  any particular cross-stream location. 

Although distortions in amplitude modulation a t  lr = 3.00 cm appear at cross-stream 
locations corresponding to  a’(fo) maxima, i t  is clear from figure 13 that  the most 
intense amplitude modulations, as measured by the modulation index &, occur a t  

t Wavenumber -frequency meaisiireineiitb sliown in figLwc 19 lndlcatc that f o  and I t s  Imrmorllc 

nf,,, 2 fo 

\\AL\TS at 2 ju ,  3f,, all t r a w l  at tIlc sattlw spcctl. 
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cross-stream locations beyond that of a’( f,) maxima. We have shown that amplitude 
modulation is related to nonlinear interactions. The strength of these interactions can 
be measured by the bicoherency spectrum, b2(wi, mi) which is determined by the bi- 
spectrum B(wi, w i ) .  Kim & Powers (1979) and others have shown that the bispectrum 
represents the contribution to the mean-cube value of the fluctuation velocity field 
E[u’(x, t)3] due to the interaction of those spectral components at wi and wi. A normal- 
ized mean-cube value, the skewness, can be defined as 1.9, = E [ U ’ ~ ] / E [ U ’ ~ ] ~ .  

Measured cross-stream values of S, are plotted in figure 21 for x = 3-00 em. Note 
that the maximum negative values of the mean-cube value occur at cross-stream 
locations which correspond closely to the cross-stream locations of maximums in the 
amplitude-modulation index (figure 13). As noted earlier, the large centre-line values 
of a do not seem to have dynamic significance. They occur because of the definition 
a = a,/a,, and reflect the fact that a, is very small at the centre-line. Although the 
amplitude-modulation index a is sensitive to the cross-stream values of Xu, the phase- 
modulation index p stays relatively constant across the shear layer. 

It appears, then, that amplitude modulation is intimately connected with the local 
cross-stream and downstream details of the nonlinear interactions which take place 
during transition. Phase modulations, on the other hand, exhibit both cross-stream 
and downstream memory. The two types of modulations are clearly linked in some 
manner, by the nonlinear dynamics of the transition. We suspect that the phase 
modulations are controlled by the largest-amplitude low-frequency fluctuation; 
perhaps by a parametric effect set up by low-frequency periodic distortions of the 
mean shear. The link between amplitude and phase modulations seems to be the 
result of the nonlinear interactions that produce the low-frequency fluctuations, 
which once generated interact back with the instability modes to produce low- 
frequency amplitude modulations. 

4.2.5. AM-PM and nonlinear dispersion. A simple argument by Kim et al. (1980) 
2 F L M  123 
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(which does not consider local variations in flow dynamics) does show that a link can 
exist between amplitude and phase modulations when finite-amplitude effects produce 
a dispersion relation of the form w = w(lc,a2). Using the notation of (i),  it is fairly 
straightforward to show that if the modulation amplitude a,(x, t ) t  is small compared 
with a,(x), then the instantaneous frequency of the wave can be expressed as 

w = w,(k) + (aw/aa2),06u2(x, t ) ,  

where 6u2 = a&(x, t ) .  We can regard w - w,(k)  = Sw as the local time variation of wave 
frequency due to finite-amplitude effects. Since the instantaneous frequency of the 
modulated wave in (1) is w = w, - ap/at, we have Sw = - ap,/at and 

Thus, if finite-amplitude effects establish an  amplitude-dependent dispersion relation, 
we find that amplitude modulation u,(x, t )  can induce phase modulation p m ( X ,  t ) ,  
and vice versa. Measured values of Sw as a function of a; are shown in figure 22 for the 
a^, = /?, = 0.2, 8, = experiments. The numbers next to  each point indicate the 
downstream location of the measurement. Note that, from x = 1.75 cm to x = 5.00 cm, 
where the amplitude a'( fo) /Uo of the dominant instability exceeds an apparent 
threshold value of roughly 5 yo (see figure 3), 16wl does indeed vary directly with a&. 

t The modulation amplitude a,,(x, t )  is not to be confused with the amplitude uI(z, t )  of the 
difference mode, even though the difference mode, through various nonlinear interactions, may 
bc the ultimate source of am(x, t ) .  
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For a’(fo)/U0 ;5 5% no consistent relation between lSwl and a; could be measured. 
This suggests that one of the primary roles of the exponentially growing instability 
may be to establish appropriate finite-amplitude conditions (vis-b-vis w(k,  a$)) such 
that any amplitude modulation produced by the onset of nonlinear interactions can 
induce the generation or maintenance of phase modulation. 

5. Conclusions 
The overall picture of transition that arises from our measurements is as follows. 

Small-amplitude disturbances trigger instabilities which grow exponentially in ampli- 
tude. Nonlinear interactions between growing instabilities produce sum and difference 
modes. Strong difference modes interact back with the dominant instabilities to 
produce a,mplitude modulations. At the same time, nonlinear dispersion effects 
w(k,  a2), established by the finite amplitude of the growing instability, condition the 
flow so that existing amplitude modulations can trigger phase modulations. Once 
simultaneous phase and amplitude modulations are established, they may be main- 
tained, or altered, by subsequent nonlinear three-wave interaction mechanisms, or by 
parametric effects. Our measurements indicate that the mechanism of phase modula- 
tion dominates the spectral-broadening and energy-redistribution process. Amplitude 
modulation seems to play the role of an energy provider. 
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